## CONTENTS

| ACRONYMS AND ABBREVIATIONS          | 11-1  |
|-------------------------------------|-------|
|                                     |       |
| Background                          |       |
| METHODOLOGY AND GUIDANCE            |       |
| Relevant Guidance                   |       |
| IWEA Best Practice Guidelines       |       |
| EXTENT OF SHADOW FLICKER ASSESSMENT |       |
| Scenario 1                          |       |
| Scenario 2                          |       |
| EXISTING ENVIRONMENT                |       |
| Scenario 1                          |       |
| Scenario 2                          |       |
| POTENTIAL IMPACTS                   | 11-13 |
| Scenario 1                          |       |
| Scenario 2                          |       |
| ANNUAL IMPACTS                      |       |
| Scenario 1                          |       |
| Scenario 2                          |       |
| DAILY IMPACTS                       |       |
| Scenario 1                          |       |
| Scenario 2                          | 11-27 |
| Do nothing Scenario                 |       |
| Cumulative Impacts                  |       |
| CONCLUSION                          | 11-28 |
| REFERENCES                          |       |
| FIGURES                             |       |
| APPENDICES                          | 11-33 |

### TABLES

| Table 11-1 Sources of Information                                       |       |
|-------------------------------------------------------------------------|-------|
| Table 11-2 Average Sunshine Hours for period 1979 - 2008                |       |
| Table 11-3 Identified Receptors Within Scenario 1 Study Area            |       |
| Table 11-4 Additional Identified Receptors Within Scenario 2 Study Area | 11-12 |
| Table 11-5 Shadow Flicker Effects – Scenario 1                          | 11-14 |
| Table 11-6 Shadow Flicker Effects Scenario 2                            | 11-19 |

### FIGURES

| Figure 11-1: Shadow Flicker Study Area Scenario 1 | 11-31 |
|---------------------------------------------------|-------|
| Figure 11-2: Shadow Flicker Study Area Scenario 2 | 11-31 |
| Figure 11-3: Shadow Flicker Results Scenario 1    | 11-31 |
| Figure 11-4: Shadow Flicker Results Scenario 2    | 11-31 |

### APPENDICES

Appendix 11-1: Shadow Flicker Modelling Input Data by House / Window ..... Appendix 11-2: Shadow Flicker Scenario 1 Shutdown Times by Turbine v1 ..... Appendix 11-3: Shadow Flicker Scenario 2 Shutdown Times by Turbine v1 .....

# Acronyms and Abbreviations

| SLR   | SLR Consulting Limited                 |
|-------|----------------------------------------|
| EIAR  | Environmental Impact Assessment Report |
| WEDGs | Wind Energy Development Guidelines     |
| DTM   | Digital Terrain Model                  |
| OS    | Ordnance Survey                        |
| WEG   | Wind Energy Guidelines                 |

## Introduction

- 11.1 This chapter considers the potential impact on receptors from shadow flicker generated by the Proposed Development during the operational phase of the project.
- 11.2 The specific objectives of the chapter are to:
  - Describe the existing baseline.
  - Describe the assessment methodology and relevant guidance.
  - Describe the potential impacts.
  - Describe the need for any mitigation measures, if required; and
  - Assess the residual impacts remaining, following the implementation of any mitigation measures.

### Background

- 11.3 Under certain combinations of geographical position and time of day, when the sun passes behind the rotors of a wind turbine and casts a shadow over neighbouring properties, as the blades rotate, the shadow may appear to flick on and off, when viewed through a narrow aperture such as a window. The phenomenon occurs only within buildings where shadows are cast across a window aperture, and the effects are considered to occur up to a maximum distance of 10 times the rotor diameter from each wind turbine<sup>1</sup>. This effect is known as shadow flicker.
- 11.4 The likelihood and duration of the effect depends upon:
  - Direction and aspect of the property relative to the turbine(s): in Ireland, only properties within 130 degrees either side of north, relative to the turbines, can be affected, as turbines do not cast long shadows on their southern side<sup>2</sup>;
  - Distance from turbine(s): the further the building is from the turbine, the less potential there is for the effect to arise, given the shadow flicker effect fades with distance due to light refraction.
  - Turbine height and rotor diameter.
  - Topography between the turbine and the receptor.
  - Time of year and day.
  - Wind direction and orientation of the turbine blades in relation to the receptor; and
  - Weather conditions (i.e. cloudy days reduce the likelihood of effects occurring).
- 11.5 If significant effects due to shadow flicker cannot be avoided through embedded mitigation, then technical mitigation solutions are available, such as shutting down those turbine(s) which cause the effect when certain conditions prevail.

<sup>&</sup>lt;sup>2</sup> As described in the Draft Wind Energy Guidelines, 2019.





<sup>&</sup>lt;sup>1</sup> IWEA Best Practice Guidelines for Wind Farms. Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://windenergyireland.com/images/files/best-practice-guidelines-for-windfarm-electrical-operation1.pdf Date Accessed 23/6/2023

11.6 Shadow flicker effects are only considered during the operational phase of a wind farm development, and do not occur if the turbines are not rotating or if the sun is not shining.

#### Statement of Authority

- 11.7 This technical assessment was undertaken by Tim Doggett (BSc(hons), MSc, WASP) and Anne Altringham (BSc(hons), MSc) of SLR Consulting Ltd.
  - Tim is a Principal EIA Consultant who has over 15 years of experience in undertaking wind farm design and shadow flicker impact assessments for EIA and ES in the UK and Ireland.
  - Anne is a Senior GIS Analyst in SLR who assists the Environmental & Social Impact Assessment team. She has several years' experience of inputting into wind farm EIAs, including preparing shadow flicker models and assessments.

## Methodology and Guidance

### **Relevant Guidance**

11.8 There are various sources of guidance with regards to the assessment and management of shadow flicker impacts caused by wind turbines. Irish guidance relevant to the Proposed Development is summarised below.

### **IWEA Best Practice Guidelines**

- 11.9 In March 2012, the Irish Wind Energy Association (IWEA) issued a document detailing best practice guidance for wind farms (IWEA, 2012).
- 11.10 The document provides a preferred methodology to predict the worst-case shadow flicker conditions in order to provide the most robust results from the assessment. With regards to shadow flicker, the IWEA guidelines support those given in the WEDG, stating:

'The assessment of potentially sensitive locations or receptors within a distance of ten rotor diameters from proposed turbine locations will normally be suitable for EIA purposes.'

#### Westmeath County Council Development Plan (2021 – 2027)

11.11 Section 10.23 of the Westmeath Development Plan references wind energy. In relation to shadow flicker, CPO 10.146 states:

'Ensure that proposals for energy development demonstrate that human health has been considered, including those relating to the topics of:

• • •

Shadow Flicker (for wind turbine developments, including detailed Shadow Flicker Study)'

#### Meath County Council Development Plan (2021 – 2027)

11.12 No specific mention of shadow flicker assessment is contained within this development plan, but reference is made to wind energy being supported, subject to assessments being undertaken in line with the 2006 Wind Energy Development Guidelines, or any revisions thereof.

#### Wind Energy Development Guidelines (2006)

11.13 The 2006 Guidelines state that:

'Careful site selection, design and planning, and good use of relevant software, can help avoid the possibility of shadow flicker in the first instance. It is recommended that shadow flicker at neighbouring offices and dwellings within 500m should not exceed 30 hours per year or 30 minutes per day.'

11.14 The Guidelines also state that:

'At distances greater than 10 rotor diameters from a turbine, the potential for shadow flicker is very low. Where shadow flicker could be a problem, developers should provide calculations to quantify the effect and where appropriate take measures to prevent or ameliorate the potential effect, such as by turning off a particular turbine at certain times.'

11.15 The shadow flicker modelling approach in this assessment is consistent with this recommendation.

#### **Draft Revised Wind Energy Development Guidelines (2019)**

11.16 Draft WEDGs were published in December 2019 and are subject to a consultation process. It is noted that at the time of writing (August 2023) the Draft 2019 WEDGs have not yet been adopted and the 2006 Guidelines referred to above remain in place. Nonetheless, this EIAR is cognisant of the content and adheres to the proposed measures set out in the Draft 2019 WEDGs. The Draft 2019 WEDGs note that:

'Generally only properties within 130 degrees either side of north, relative to the turbines, can be affected at these latitudes in the UK and Ireland – turbines do not cast long shadows on their southern side.'

11.17 The Draft 2019 WEDGs also outline that the time period in which a neighbouring property may be affected by shadow flicker is completely predictable from the relative locations of the wind turbine(s) and the property. To support this,

'A Shadow Flicker Study detailing the outcome of computational modelling for the potential for shadow flicker from the development should accompany all planning applications for wind energy development.'

11.18 The Draft 2019 WEDGs advise that if shadow flicker prediction modelling indicates that there is potential for shadow flicker to occur at any potentially affected property, that a design review should be carried out to consider if turbine(s) can be relocated to eliminate shadow flicker. If this cannot be accommodated, then measures which provide for automated turbine shutdown to eliminate shadow flicker would be required, subject to operational phase assessments to confirm such impacts. The Draft 2019 WEDGs also state that:

'The planning authority or An Bord Pleanála should impose condition(s) to ensure that no existing dwelling or other affected property will experience shadow flicker as a result of the wind energy development subject of the planning application.'



11.19 This approach in the current draft of the Guidelines provides for the prevention of shadow flicker by automatic shutdown of the turbines. This means that turbines will need be programmed to shut down when shadow flicker effects occur, i.e. no amount of shadow flicker per day or per year would be acceptable.

#### Note on Guidance

- 11.20 It is acknowledged that the 2006 Wind Energy Development Guidelines are currently being revised. A draft version of the replacement Wind Energy Development Guidelines (WEDGs) was published in December 2019. The consultation period has now closed, and the final version is awaiting publication.
- 11.21 If the 2019 document is published in final form within the determination period of the Proposed Development, the Board will apply the new guidelines to their assessment. However, the 2019 draft Guidelines have not been formally adopted at the time of the preparation of this chapter. This assessment covers both requirements nonetheless.
- 11.22 The make or model of turbine which is eventually selected for installation within the ranges assessed, will adhere to the limits set out in the relevant chapters and the developer commits that the impacts from the selected machine will be no greater than what is assessed and committed to within in this EIAR.
- 11.23 Post-construction monitoring will be carried out to confirm the impacts from shadow flicker to sensitive receptors and ensure these are no more significant than what is allowable. Any significant impacts above allowable limits will be mitigated for as set out in this EIAR.

#### **Field Assessment**

- 11.24 Building location data was obtained from the Geodirectory Residential Addresses dataset in 2022 and via housing survey data provided by the Applicant in 2022. The supplied dataset covered an area 10 rotor diameters from the turbines. The dataset was then further refined through the use of aerial imagery in 2022/23 to identify any additional buildings omitted from the dataset, as well as identifying building condition (habitable, derelict etc.), and building dimensions; the building centre-point co-ordinates were also refined where required.
- 11.25 The following sources of information outlined in **Table 11-1** were used to inform this assessment.

#### **Table 11-1 Sources of Information**

| Торіс                                                                                                    | Source of Information                                                                                             |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Residential properties<br>Location in relation to Proposed Development<br>and identification of windows. | GeoDirectory - Residential Addresses<br>Ordnance Survey (OS) Ireland 1:25,000 Mapping<br>Google Earth Street View |
| Topography<br>Height data                                                                                | Copernicus 25m DTM data                                                                                           |

- 11.26 Any building that was clearly identified as uninhabitable (such as a farm outbuilding) or derelict was removed, however where this was not possible to confirm, the building was considered as part of the assessment.
- 11.27 Two turbine models have been considered for this assessment: one with a 155m rotor diameter (Scenario 1), and one with a 162m rotor diameter (Scenario 2). As the shadow



flicker study area is defined by the diameter of the rotor, two modelling scenarios have been used as follows. As the rotor diameters represent both ends of the range of effects, all permutations within the range which the planning application is seeking permission for will be within the identified effects.

- 11.28 No receptors have been identified within the 2006 WEDG 500 m assessment area, and in total up to 211 receptors have been identified within the 1,550 and 1,620 m shadow flicker study areas, as shown on **Figure 11-1**.
- 11.29 The closest receptor (a property where the occupier has a financial involvement in the wind farm development) is 705 m from the nearest proposed wind turbine. **Appendix 11-1** contains the model input data for all of the receptors and their windows. Modelling parameters and assumptions are described in Section 11.27.

## **Extent of Shadow Flicker Assessment**

11.30 For a receptor to be sensitive to shadow flicker, there must be windows with line of sight to the turbine rotor and the room where the window is located must have the potential to be occupied, e.g. a living or workspace. The study area and receptor locations are shown on **Figure 11-1 and Figure 11-2** and presented in tabulated format in **Appendix 11-1**.

## Scenario 1

- 11.31 A study area of 1,550 m from each of the wind turbines has been used for this assessment. This is based upon ten times the maximum rotor diameter (155 m) that would be used within the Proposed Development in accordance with current guidelines if this turbine were procured post consent.
- 11.32 The assessment considers all identified potential shadow flicker sensitive receptors within the study area. For this assessment, inhabited residential buildings have been considered sensitive receptors (no other property types were identified within the study area), in line with the guidance in the Wind Energy Development Guidelines (2006).

## Scenario 2

- 11.33 A study area of 1,620 m from each of the wind turbines has been used for this assessment. This is based upon ten times the maximum rotor diameter (162 m) that would be used within the Proposed Development in accordance with current guidelines if this turbine were procured post consent.
- 11.34 The assessment considers all identified potential shadow flicker sensitive receptors within the study area. For this assessment, inhabited residential buildings have been considered sensitive receptors (no other property types were identified within the study area), in line with the guidance in the Wind Energy Development Guidelines (2006).

### Modelling Parameters

- 11.35 The shadow flicker assessment comprises numerical modelling of the proposed turbines and receptors within the defined study area. SLR Consulting use one of the industry standard software packages, ReSoft Wind Farm software (version 5.1.2.1).
- 11.36 The calculations from this assessment process assume a worst-case scenario based on the sun shining during all daylight hours over the course of a year, no obscuring features



(such as trees, hedges, other buildings) being present, the face of the rotor always being aligned towards the dwelling, and that the rotor is always turning (i.e. the wind is always blowing between 4m/s and 25m/s, and no account is taken of shut down periods for maintenance). This methodology yields a theoretical maximum indication of potential shadow flicker incidence, together with the times of day, and dates during the year when potential incidence may occur.

- 11.37 The levels of shadow flicker at each receptor have been calculated based on a 'greenhouse' modelling approach, where the full length of each façade of a building is modelled as a window (and is therefore sensitive to shadow flicker). Each modelled window is assumed to have a height of 2 m. This approach has been taken in order to present a worst-case estimate of shadow flicker, in the absence of any detailed window location data. In reality, only the glazed area of each façade would be sensitive to shadow flicker effects, therefore modelling the full façade will result in higher predicted levels than will actually be likely.
- 11.38 The software performs calculations to determine the position of the sun throughout the year, and thus during what times of day it will theoretically cast a shadow across the windows of nearby houses within 10 rotor diameters. Data input into the model where shadow flicker assessment is required is as follows:
  - The locations of all properties within ten times the rotor diameter and 130 degrees either side of north of any turbine.
  - The dimensions and orientations of windows facing the Proposed Development.
  - The surrounding topography (Ordnance Survey Digital Terrain Model); and
  - The locations and dimensions of the turbines, as defined by the two modelled scenarios detailed in Section 11.27.
- 11.39 Running the software with the above data inputs is defined as the 'worst case scenario' for the purposes of the shadow flicker model. In addition, this 'worst case scenario' does not take into consideration the screening effect of anything such as vegetation or buildings located between the wind turbines and the property.
- 11.40 In practice it is likely that shadow flicker effects would occur for considerably less time than the worst-case predictions, for the following reasons:
  - In Ireland, sunshine typically occurs for approximately 28.6% of daylight hours (see **Figure 11-3** and **Figure 11-4**). At other times, the wind turbines are unlikely to cast shadows sufficiently pronounced to cause shadow flicker effects to occur;
  - The model assumes that the wind is blowing constantly so that the turbine blades are rotating during all daylight hours; and
  - At times when the wind turbine rotor is not oriented exactly perpendicular to the property, the duration of shadow flicker effects would be reduced due to the elliptical shape of the shadow cast.
- 11.41 Only those properties within the relevant study areas of the proposed turbines for each scenarios study area have been included in the calculations. The model has been run using Copernicus 25 DTM data which is the most accurate digital terrain data available for the site.

#### Average Sunshine Hours

11.42 The closest meteorological station to the Proposed Development with historical measurements compiled by Met Éireann is located at Mullingar, approximately 28 km from



the Proposed Development. This data, found in **Table 11-2**, represents the average sunshine per day as recorded over a 30 year period (1979 – 2008), the actual sunshine (daylight) hours at the Proposed Development site and therefore the average percentage of time shadow flicker could actually occur per year is 29.8%.

|                                     | Jan  | Feb  | Mar   | Apr   | Мау   | Jun   | Jul   | Aug   | Sept  | Oct   | Nov  | Dec  | Annual<br>Average |
|-------------------------------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|-------------------|
| Mean Daily<br>Duration <sup>3</sup> | 1.8  | 2.5  | 3.2   | 4.9   | 5.8   | 5.0   | 4.6   | 4.6   | 3.9   | 3.2   | 2.2  | 1.6  | 3.6               |
| Daylight<br>hours⁴                  | 8.09 | 9.56 | 11.53 | 14.04 | 15.57 | 17.03 | 16.34 | 14.52 | 12.46 | 10.41 | 8.43 | 7.37 | 12.1              |
| %<br>Sunshine                       | 22.2 | 26.2 | 2787  | 34.9  | 37.3  | 29.7  | 28.2  | 31.7  | 31.3  | 30.7  | 26.1 | 21.7 | 29.8              |

 Table 11-2 Average Sunshine Hours for period 1979 - 2008

## **Existing Environment**

### Scenario 1

 11.43 171 residential properties have been identified which fall within the 1,550m study area. These properties could theoretically be affected by shadow flicker from the Proposed Development (Figure 11-1). Summary details of these properties are identified in Table 11-3, with additional details of the properties found in Appendix 11-1.

### Scenario 2

11.44 An additional 40 properties compared to Scenario 1 fall into the larger study area associated with Scenario 2. These properties could theoretically be affected by shadow flicker from the Proposed Development (Figure 11-2). Summary details of these properties are identified in Table 11-4, with additional details of the properties found in Appendix 11-1.

#### Table 11-3 Identified Receptors Within Scenario 1 Study Area

| SLR ID No. | Easting | Northing | Distance from Nearest<br>Proposed Turbine (m) |
|------------|---------|----------|-----------------------------------------------|
| 2          | 663178  | 769451   | 1,340                                         |
| 3          | 663314  | 769378   | 1,275                                         |
| 4          | 662696  | 769273   | 1,253                                         |
| 5          | 663186  | 769258   | 1,147                                         |
| 6          | 663622  | 769206   | 1,185                                         |



<sup>&</sup>lt;sup>3</sup> <u>https://www.met.ie/climate-ireland/1981-2010/mullingar.html</u>

<sup>&</sup>lt;sup>4</sup> https://www.worlddata.info/europe/ireland/sunset.php

| SLR ID No. | Easting | Northing | Distance from Nearest<br>Proposed Turbine (m) |
|------------|---------|----------|-----------------------------------------------|
| 7          | 663748  | 769190   | 1,225                                         |
| 8          | 663619  | 769164   | 1,145                                         |
| 9          | 663790  | 769151   | 1,212                                         |
| 10         | 663813  | 769145   | 1,219                                         |
| 11         | 663763  | 769129   | 1,179                                         |
| 13         | 663252  | 769078   | 970                                           |
| 14         | 663847  | 769075   | 1,179                                         |
| 15         | 661858  | 768977   | 1,455                                         |
| 16         | 661833  | 768951   | 1,488                                         |
| 17         | 662837  | 768924   | 877                                           |
| 18         | 664269  | 768845   | 1,324                                         |
| 22         | 664483  | 768817   | 1,493                                         |
| 24         | 664548  | 768800   | 1,543                                         |
| 25         | 664557  | 768798   | 1,550                                         |
| 31         | 664502  | 768771   | 1,489                                         |
| 32         | 664515  | 768768   | 1,499                                         |
| 33         | 664540  | 768764   | 1,520                                         |
| 34         | 664539  | 768757   | 1,516                                         |
| 35         | 664573  | 768756   | 1,546                                         |
| 37         | 664534  | 768748   | 1,508                                         |
| 38         | 664531  | 768743   | 1,503                                         |
| 40         | 664526  | 768735   | 1,495                                         |
| 41         | 664523  | 768730   | 1,490                                         |
| 44         | 664517  | 768719   | 1,480                                         |
| 45         | 664551  | 768715   | 1,510                                         |
| 47         | 664511  | 768714   | 1,473                                         |
| 48         | 664546  | 768710   | 1,503                                         |
| 49         | 664591  | 768708   | 1,544                                         |
| 51         | 664541  | 768701   | 1,495                                         |
| 52         | 664536  | 768696   | 1,488                                         |
| 53         | 664589  | 768696   | 1,537                                         |
| 55         | 664532  | 768687   | 1,481                                         |
| 57         | 662193  | 768682   | 1,028                                         |
| 58         | 664583  | 768682   | 1,526                                         |
| 59         | 664526  | 768681   | 1,473                                         |

| SLR ID No. | Easting | Northing | Distance from Nearest<br>Proposed Turbine (m) |
|------------|---------|----------|-----------------------------------------------|
| 61         | 664565  | 768675   | 1,507                                         |
| 62         | 664521  | 768673   | 1,466                                         |
| 63         | 661508  | 768672   | 1,477                                         |
| 65         | 664515  | 768667   | 1,458                                         |
| 67         | 664557  | 768663   | 1,495                                         |
| 68         | 664509  | 768660   | 1,449                                         |
| 69         | 664506  | 768652   | 1,444                                         |
| 70         | 664553  | 768649   | 1,486                                         |
| 71         | 664614  | 768645   | 1,542                                         |
| 73         | 664543  | 768639   | 1,473                                         |
| 78         | 664539  | 768625   | 1,465                                         |
| 80         | 664542  | 768610   | 1,462                                         |
| 81         | 664599  | 768607   | 1,515                                         |
| 82         | 664611  | 768602   | 1,525                                         |
| 83         | 664624  | 768600   | 1,536                                         |
| 84         | 664636  | 768596   | 1,546                                         |
| 88         | 662416  | 768566   | 831                                           |
| 90         | 662375  | 768547   | 828                                           |
| 94         | 661966  | 768508   | 1,023                                         |
| 95         | 662191  | 768508   | 880                                           |
| 96         | 661880  | 768496   | 1,078                                         |
| 97         | 661618  | 768490   | 1,282                                         |
| 98         | 661946  | 768391   | 959                                           |
| 99         | 662013  | 768391   | 908                                           |
| 100        | 661473  | 768388   | 1,356                                         |
| 101        | 661582  | 768321   | 1,228                                         |
| 103        | 664607  | 768202   | 1,442                                         |
| 105        | 664417  | 768107   | 1,250                                         |
| 106        | 664413  | 768054   | 1,247                                         |
| 107        | 664367  | 767954   | 1,200                                         |
| 108        | 661448  | 767948   | 1,248                                         |
| 109        | 664378  | 767844   | 1,190                                         |
| 110        | 661343  | 767481   | 1,374                                         |
| 111        | 664170  | 767139   | 1,110                                         |
| 112        | 662346  | 767131   | 731                                           |

| SLR ID No. | Easting | Northing | Distance from Nearest<br>Proposed Turbine (m) |
|------------|---------|----------|-----------------------------------------------|
| 113        | 664139  | 767108   | 1,098                                         |
| 114        | 662352  | 767045   | 806                                           |
| 115        | 662874  | 767030   | 724                                           |
| 116        | 662717  | 767019   | 760                                           |
| 117        | 662622  | 766994   | 787                                           |
| 118        | 664369  | 766985   | 1,359                                         |
| 119        | 662533  | 766982   | 811                                           |
| 120        | 662671  | 766976   | 803                                           |
| 121        | 662624  | 766894   | 743                                           |
| 122        | 663992  | 766834   | 1,157                                         |
| 123        | 661179  | 766812   | 1,537                                         |
| 124        | 662917  | 766811   | 705                                           |
| 126        | 663984  | 766779   | 1,192                                         |
| 127        | 661117  | 766752   | 1,543                                         |
| 128        | 663206  | 766692   | 763                                           |
| 129        | 663859  | 766681   | 1,194                                         |
| 130        | 663815  | 766643   | 1,203                                         |
| 131        | 663774  | 766621   | 1,202                                         |
| 132        | 661021  | 766593   | 1,525                                         |
| 133        | 663632  | 766582   | 1,057                                         |
| 134        | 662006  | 766575   | 783                                           |
| 135        | 663738  | 766575   | 1,152                                         |
| 136        | 661985  | 766552   | 789                                           |
| 137        | 661963  | 766528   | 797                                           |
| 138        | 663549  | 766490   | 945                                           |
| 139        | 661022  | 766443   | 1,447                                         |
| 140        | 661022  | 766443   | 1,447                                         |
| 141        | 661698  | 766325   | 825                                           |
| 142        | 661763  | 766248   | 725                                           |
| 143        | 661719  | 766228   | 745                                           |
| 144        | 663812  | 766228   | 1,096                                         |
| 145        | 661658  | 766210   | 783                                           |
| 146        | 661671  | 766209   | 771                                           |
| 147        | 661126  | 766115   | 1,223                                         |
| 148        | 661511  | 766112   | 861                                           |



₩SLR

| SLR ID No. | Easting | Northing | Distance from Nearest<br>Proposed Turbine (m) |
|------------|---------|----------|-----------------------------------------------|
| 149        | 661612  | 766104   | 767                                           |
| 150        | 661186  | 766099   | 1,161                                         |
| 151        | 664064  | 766046   | 1,278                                         |
| 152        | 661480  | 766009   | 854                                           |
| 153        | 663946  | 765990   | 1,151                                         |
| 154        | 663931  | 765957   | 1,130                                         |
| 155        | 661115  | 765936   | 1,127                                         |
| 156        | 663749  | 765858   | 937                                           |
| 157        | 661143  | 765835   | 1,044                                         |
| 158        | 663799  | 765835   | 985                                           |
| 159        | 663781  | 765814   | 966                                           |
| 160        | 661166  | 765774   | 991                                           |
| 162        | 663560  | 765740   | 744                                           |
| 163        | 663755  | 765714   | 940                                           |
| 164        | 660662  | 765704   | 1,418                                         |
| 165        | 661169  | 765687   | 945                                           |
| 166        | 663755  | 765678   | 943                                           |
| 167        | 663734  | 765635   | 927                                           |
| 168        | 661163  | 765591   | 909                                           |
| 169        | 663711  | 765571   | 916                                           |
| 170        | 661173  | 765536   | 880                                           |
| 171        | 663685  | 765517   | 905                                           |
| 172        | 661162  | 765500   | 879                                           |
| 173        | 663713  | 765437   | 956                                           |
| 174        | 663714  | 765429   | 960                                           |
| 175        | 661117  | 765386   | 897                                           |
| 176        | 663724  | 765354   | 998                                           |
| 177        | 663727  | 765305   | 1,022                                         |
| 178        | 661182  | 765243   | 821                                           |
| 179        | 663766  | 765181   | 1,117                                         |
| 180        | 660527  | 765169   | 1,477                                         |
| 181        | 661171  | 765099   | 844                                           |
| 182        | 663408  | 765064   | 916                                           |
| 183        | 661179  | 765061   | 843                                           |
| 184        | 661186  | 765028   | 844                                           |

| SLR ID No. | Easting | Northing | Distance from Nearest<br>Proposed Turbine (m) |
|------------|---------|----------|-----------------------------------------------|
| 185        | 661190  | 764996   | 849                                           |
| 186        | 663503  | 764757   | 1,149                                         |
| 187        | 663573  | 764688   | 1,246                                         |
| 188        | 663573  | 764688   | 1,246                                         |
| 189        | 663717  | 764675   | 1,372                                         |
| 190        | 663740  | 764659   | 1,400                                         |
| 191        | 663549  | 764655   | 1,246                                         |
| 192        | 663549  | 764655   | 1,246                                         |
| 193        | 663495  | 764598   | 1,240                                         |
| 194        | 663472  | 764552   | 1,254                                         |
| 195        | 663472  | 764552   | 1,254                                         |
| 196        | 663324  | 764525   | 1,172                                         |
| 197        | 663440  | 764510   | 1,261                                         |
| 198        | 661264  | 764369   | 1,143                                         |
| 199        | 661239  | 764346   | 1,177                                         |
| 200        | 661200  | 764304   | 1,234                                         |
| 201        | 661128  | 764267   | 1,310                                         |
| 202        | 661128  | 764267   | 1,310                                         |
| 203        | 661110  | 764253   | 1,332                                         |
| 204        | 661110  | 764253   | 1,332                                         |
| 205        | 661084  | 764237   | 1,361                                         |
| 206        | 660917  | 764228   | 1,484                                         |
| 207        | 661062  | 764225   | 1,385                                         |
| 208        | 661031  | 764215   | 1,414                                         |
| 209        | 661004  | 764201   | 1,442                                         |
| 210        | 660975  | 764171   | 1,484                                         |

### Table 11-4 Additional Identified Receptors Within Scenario 2 Study Area

| SLR ID No. | Easting | Northing | Distance from Nearest<br>Proposed Turbine (m) |
|------------|---------|----------|-----------------------------------------------|
| 1          | 662782  | 769679   | 1,614                                         |
| 12         | 661836  | 769090   | 1,561                                         |
| 19         | 664571  | 768827   | 1,576                                         |
| 20         | 664567  | 768824   | 1,571                                         |
| 21         | 664565  | 768819   | 1,567                                         |
| 23         | 664563  | 768813   | 1,562                                         |



| SLR ID No. | Easting | Northing | Distance from Nearest<br>Proposed Turbine (m) |
|------------|---------|----------|-----------------------------------------------|
| 26         | 664601  | 768786   | 1,584                                         |
| 27         | 664617  | 768779   | 1,596                                         |
| 28         | 664623  | 768777   | 1,601                                         |
| 29         | 664628  | 768776   | 1,605                                         |
| 30         | 664633  | 768776   | 1,609                                         |
| 36         | 664583  | 768751   | 1,553                                         |
| 39         | 664619  | 768740   | 1,582                                         |
| 42         | 664614  | 768728   | 1,573                                         |
| 43         | 664660  | 768721   | 1,612                                         |
| 46         | 664612  | 768715   | 1,566                                         |
| 50         | 664657  | 768708   | 1,605                                         |
| 54         | 664653  | 768696   | 1,597                                         |
| 56         | 664646  | 768685   | 1,586                                         |
| 60         | 664633  | 768676   | 1,571                                         |
| 64         | 664669  | 768669   | 1,602                                         |
| 66         | 664682  | 768666   | 1,613                                         |
| 72         | 664628  | 768645   | 1,555                                         |
| 74         | 664640  | 768639   | 1,564                                         |
| 75         | 664654  | 768637   | 1,577                                         |
| 76         | 664666  | 768631   | 1,586                                         |
| 77         | 664681  | 768630   | 1,600                                         |
| 79         | 664693  | 768625   | 1,610                                         |

## **Potential Impacts**

- 11.45 Two turbine models have been considered in this assessment as outlined in Section 11.27. In terms of EIA the turbine with a 162m rotor diameter is considered to be the worst case as it brings more receptors into the assessment area and covers all design permutations that have been set out in **Chapter 2** of this EIAR. Both models of turbine, comprising the 155 m and 162 m diameter rotors. have been assessed and the results presented below.
- 11.46 The make or model of turbine which is eventually selected for installation within the ranges assessed, will adhere to the limits set out, and the developer commits that the impacts from the selected machine will be no greater than what is assessed and committed to within in this EIAR.

## Scenario 1

11.47 **Figure 11-3 and Figure 11-4** show the estimated annual hours of shadow flicker effect across the study area. Based on the predictive modelling technique outlined above, there is predicted to be shadow flicker effects of up to 145 hours per year, with the highest



potential effect found on receptor 142, (shown in **Table 11-5**) assuming the worst-case scenario. Of the 171 receptors in the study area, 29 would not experience any shadow flicker effects arising as a result of the operational phase of the wind farm.

11.48 The theoretical results shown in **Table 11-5** are based on the 'worst-case scenario<sup>5</sup>', which does not make any allowance for average sunshine hours and assumes the sun is shining and the wind is blowing during 100% of daylight hours. The "likely" scenario takes into account the long-term average sunshine hours per year (29.8%) recorded at the nearest Met Éireann Met Station (see Section 11.42).

| SLR ID<br>No. | Total<br>Theoretic<br>al Days<br>Per Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Max Minutes<br>Per Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely⁵ Hours<br>Per Year | Likely⁴<br>Average<br>Minutes per<br>day |
|---------------|-------------------------------------------|----------------------------------------------|------------------------|-------------------------------------------|---------------------------|------------------------------------------|
| 2             | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 3             | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 4             | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 5             | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 6             | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 7             | 23                                        | 0.31                                         | 18.6                   | 5.6                                       | 1.7                       | 5.5                                      |
| 8             | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 9             | 40                                        | 0.48                                         | 28.8                   | 15.4                                      | 4.6                       | 8.6                                      |
| 10            | 44                                        | 0.51                                         | 30.6                   | 18.2                                      | 5.4                       | 9.1                                      |
| 11            | 40                                        | 0.49                                         | 29.4                   | 15.8                                      | 4.7                       | 8.8                                      |
| 13            | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 14            | 60                                        | 0.55                                         | 33                     | 28.2                                      | 8.4                       | 9.8                                      |
| 15            | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 16            | 19                                        | 0.24                                         | 14.4                   | 3.5                                       | 1.0                       | 4.3                                      |
| 17            | 24                                        | 0.37                                         | 22.2                   | 6.8                                       | 2.0                       | 6.6                                      |
| 18            | 49                                        | 0.53                                         | 31.8                   | 18.1                                      | 5.4                       | 9.5                                      |
| 22            | 40                                        | 0.47                                         | 28.2                   | 12.9                                      | 3.8                       | 8.4                                      |
| 24            | 38                                        | 0.45                                         | 27                     | 11.8                                      | 3.5                       | 8.0                                      |
| 25            | 37                                        | 0.44                                         | 26.4                   | 11.6                                      | 3.5                       | 7.9                                      |
| 31            | 39                                        | 0.46                                         | 27.6                   | 12.5                                      | 3.7                       | 8.2                                      |
| 32            | 38                                        | 0.46                                         | 27.6                   | 12.3                                      | 3.7                       | 8.2                                      |
| 33            | 38                                        | 0.45                                         | 27                     | 11.9                                      | 3.5                       | 8.0                                      |

#### Table 11-5 Shadow Flicker Effects – Scenario 1



<sup>&</sup>lt;sup>5</sup> See section 11.42

<sup>&</sup>lt;sup>6</sup> Based on the average sunshine hours for the site of 29.8%.

| SLR ID<br>No. | Total<br>Theoretic<br>al Days<br>Per Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Max Minutes<br>Per Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely⁵ Hours<br>Per Year | Likely⁴<br>Average<br>Minutes per<br>day |
|---------------|-------------------------------------------|----------------------------------------------|------------------------|-------------------------------------------|---------------------------|------------------------------------------|
| 34            | 38                                        | 0.45                                         | 27                     | 11.9                                      | 3.5                       | 8.0                                      |
| 35            | 38                                        | 0.45                                         | 27                     | 11.4                                      | 3.4                       | 8.0                                      |
| 37            | 36                                        | 0.46                                         | 27.6                   | 11.9                                      | 3.5                       | 8.2                                      |
| 38            | 38                                        | 0.46                                         | 27.6                   | 12.1                                      | 3.6                       | 8.2                                      |
| 40            | 38                                        | 0.46                                         | 27.6                   | 12.2                                      | 3.6                       | 8.2                                      |
| 41            | 37                                        | 0.46                                         | 27.6                   | 12.2                                      | 3.6                       | 8.2                                      |
| 44            | 38                                        | 0.46                                         | 27.6                   | 12.4                                      | 3.7                       | 8.2                                      |
| 45            | 36                                        | 0.45                                         | 27                     | 11.7                                      | 3.5                       | 8.0                                      |
| 47            | 38                                        | 0.47                                         | 28.2                   | 12.5                                      | 3.7                       | 8.4                                      |
| 48            | 38                                        | 0.46                                         | 27.6                   | 11.9                                      | 3.5                       | 8.2                                      |
| 49            | 35                                        | 0.44                                         | 26.4                   | 11.1                                      | 3.3                       | 7.9                                      |
| 51            | 37                                        | 0.46                                         | 27.6                   | 12                                        | 3.6                       | 8.2                                      |
| 52            | 36                                        | 0.46                                         | 27.6                   | 12                                        | 3.6                       | 8.2                                      |
| 53            | 36                                        | 0.45                                         | 27                     | 11.3                                      | 3.4                       | 8.0                                      |
| 55            | 38                                        | 0.46                                         | 27.6                   | 12.2                                      | 3.6                       | 8.2                                      |
| 57            | 124                                       | 0.84                                         | 50.4                   | 63.6                                      | 19.0                      | 15.0                                     |
| 58            | 36                                        | 0.45                                         | 27                     | 11.4                                      | 3.4                       | 8.0                                      |
| 59            | 38                                        | 0.46                                         | 27.6                   | 12.3                                      | 3.7                       | 8.2                                      |
| 61            | 36                                        | 0.45                                         | 27                     | 11.7                                      | 3.5                       | 8.0                                      |
| 62            | 37                                        | 0.47                                         | 28.2                   | 12.3                                      | 3.7                       | 8.4                                      |
| 63            | 60                                        | 0.5                                          | 30                     | 19.4                                      | 5.8                       | 8.9                                      |
| 65            | 38                                        | 0.47                                         | 28.2                   | 12.5                                      | 3.7                       | 8.4                                      |
| 67            | 37                                        | 0.46                                         | 27.6                   | 11.7                                      | 3.5                       | 8.2                                      |
| 68            | 38                                        | 0.47                                         | 28.2                   | 12.6                                      | 3.8                       | 8.4                                      |
| 69            | 39                                        | 0.47                                         | 28.2                   | 12.7                                      | 3.8                       | 8.4                                      |
| 70            | 36                                        | 0.46                                         | 27.6                   | 11.9                                      | 3.5                       | 8.2                                      |
| 71            | 35                                        | 0.44                                         | 26.4                   | 11                                        | 3.3                       | 7.9                                      |
| 73            | 38                                        | 0.46                                         | 27.6                   | 12.1                                      | 3.6                       | 8.2                                      |
| 78            | 37                                        | 0.46                                         | 27.6                   | 12.1                                      | 3.6                       | 8.2                                      |
| 80            | 36                                        | 0.46                                         | 27.6                   | 12.1                                      | 3.6                       | 8.2                                      |
| 81            | 36                                        | 0.45                                         | 27                     | 11.3                                      | 3.4                       | 8.0                                      |
| 82            | 35                                        | 0.45                                         | 27                     | 11.1                                      | 3.3                       | 8.0                                      |
| 83            | 36                                        | 0.44                                         | 26.4                   | 10.9                                      | 3.2                       | 7.9                                      |
| 84            | 34                                        | 0.44                                         | 26.4                   | 10.8                                      | 3.2                       | 7.9                                      |



| SLR ID<br>No. | Total<br>Theoretic<br>al Days<br>Per Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Max Minutes<br>Per Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely⁵ Hours<br>Per Year | Likely⁴<br>Average<br>Minutes per<br>day |
|---------------|-------------------------------------------|----------------------------------------------|------------------------|-------------------------------------------|---------------------------|------------------------------------------|
| 88            | 134                                       | 0.97                                         | 58.2                   | 84                                        | 25.0                      | 17.3                                     |
| 90            | 140                                       | 1.12                                         | 67.2                   | 92.3                                      | 27.5                      | 20.0                                     |
| 94            | 144                                       | 0.97                                         | 58.2                   | 83.6                                      | 24.9                      | 17.3                                     |
| 95            | 145                                       | 1.12                                         | 67.2                   | 97.2                                      | 29.0                      | 20.0                                     |
| 96            | 147                                       | 0.95                                         | 57                     | 72.9                                      | 21.7                      | 17.0                                     |
| 97            | 56                                        | 0.57                                         | 34.2                   | 21.7                                      | 6.5                       | 10.2                                     |
| 98            | 159                                       | 1.11                                         | 66.6                   | 81.2                                      | 24.2                      | 19.8                                     |
| 99            | 157                                       | 1.15                                         | 69                     | 95                                        | 28.3                      | 20.6                                     |
| 100           | 44                                        | 0.53                                         | 31.8                   | 16.1                                      | 4.8                       | 9.5                                      |
| 101           | 48                                        | 0.58                                         | 34.8                   | 19.8                                      | 5.9                       | 10.4                                     |
| 103           | 74                                        | 0.47                                         | 28.2                   | 23.9                                      | 7.1                       | 8.4                                      |
| 105           | 83                                        | 0.54                                         | 32.4                   | 32.4                                      | 9.7                       | 9.7                                      |
| 106           | 85                                        | 0.55                                         | 33                     | 33.3                                      | 9.9                       | 9.8                                      |
| 107           | 90                                        | 0.57                                         | 34.2                   | 37                                        | 11.0                      | 10.2                                     |
| 108           | 41                                        | 0.55                                         | 33                     | 15.8                                      | 4.7                       | 9.8                                      |
| 109           | 93                                        | 0.56                                         | 33.6                   | 38                                        | 11.3                      | 10.0                                     |
| 110           | 42                                        | 0.51                                         | 30.6                   | 15.2                                      | 4.5                       | 9.1                                      |
| 111           | 87                                        | 0.65                                         | 39                     | 48.9                                      | 14.6                      | 11.6                                     |
| 112           | 90                                        | 0.73                                         | 43.8                   | 55.9                                      | 16.7                      | 13.1                                     |
| 113           | 79                                        | 0.66                                         | 39.6                   | 43.7                                      | 13.0                      | 11.8                                     |
| 114           | 72                                        | 0.7                                          | 42                     | 40.4                                      | 12.0                      | 12.5                                     |
| 115           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 116           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 117           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 118           | 80                                        | 0.54                                         | 32.4                   | 36.3                                      | 10.8                      | 9.7                                      |
| 119           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 120           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 121           | 35                                        | 0.58                                         | 34.8                   | 16.4                                      | 4.9                       | 10.4                                     |
| 122           | 39                                        | 0.46                                         | 27.6                   | 12.8                                      | 3.8                       | 8.2                                      |
| 123           | 72                                        | 0.49                                         | 29.4                   | 30.5                                      | 9.1                       | 8.8                                      |
| 124           | 68                                        | 1.36                                         | 81.6                   | 65.3                                      | 19.5                      | 24.3                                     |
| 126           | 94                                        | 0.47                                         | 28.2                   | 30.9                                      | 9.2                       | 8.4                                      |
| 127           | 84                                        | 0.49                                         | 29.4                   | 24.8                                      | 7.4                       | 8.8                                      |
| 128           | 117                                       | 0.87                                         | 52.2                   | 82.1                                      | 24.5                      | 15.6                                     |



| SLR ID<br>No. | Total<br>Theoretic<br>al Days<br>Per Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Max Minutes<br>Per Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely⁵ Hours<br>Per Year | Likely⁴<br>Average<br>Minutes per<br>day |
|---------------|-------------------------------------------|----------------------------------------------|------------------------|-------------------------------------------|---------------------------|------------------------------------------|
| 129           | 105                                       | 0.52                                         | 31.2                   | 37.9                                      | 11.3                      | 9.3                                      |
| 130           | 108                                       | 0.54                                         | 32.4                   | 40.7                                      | 12.1                      | 9.7                                      |
| 131           | 113                                       | 0.56                                         | 33.6                   | 44.2                                      | 13.2                      | 10.0                                     |
| 132           | 48                                        | 0.48                                         | 28.8                   | 16.4                                      | 4.9                       | 8.6                                      |
| 133           | 145                                       | 0.63                                         | 37.8                   | 63.2                                      | 18.8                      | 11.3                                     |
| 134           | 140                                       | 1.03                                         | 61.8                   | 107.2                                     | 31.9                      | 18.4                                     |
| 135           | 116                                       | 0.58                                         | 34.8                   | 46.6                                      | 13.9                      | 10.4                                     |
| 136           | 146                                       | 0.97                                         | 58.2                   | 111.4                                     | 33.2                      | 17.3                                     |
| 137           | 152                                       | 0.99                                         | 59.4                   | 114.6                                     | 34.2                      | 17.7                                     |
| 138           | 171                                       | 0.7                                          | 42                     | 93.8                                      | 28.0                      | 12.5                                     |
| 139           | 84                                        | 0.5                                          | 30                     | 29.9                                      | 8.9                       | 8.9                                      |
| 140           | 84                                        | 0.5                                          | 30                     | 29.9                                      | 8.9                       | 8.9                                      |
| 141           | 186                                       | 1.04                                         | 62.4                   | 123                                       | 36.7                      | 18.6                                     |
| 142           | 198                                       | 1.23                                         | 73.8                   | 145                                       | 43.2                      | 22.0                                     |
| 143           | 198                                       | 1.23                                         | 73.8                   | 139.1                                     | 41.5                      | 22.0                                     |
| 144           | 124                                       | 0.64                                         | 38.4                   | 54.4                                      | 16.2                      | 11.4                                     |
| 145           | 200                                       | 1.2                                          | 72                     | 128.3                                     | 38.2                      | 21.5                                     |
| 146           | 200                                       | 1.22                                         | 73.2                   | 131.4                                     | 39.2                      | 21.8                                     |
| 147           | 156                                       | 0.58                                         | 34.8                   | 68.1                                      | 20.3                      | 10.4                                     |
| 148           | 193                                       | 1.21                                         | 72.6                   | 114.7                                     | 34.2                      | 21.6                                     |
| 149           | 199                                       | 1.33                                         | 79.8                   | 128.2                                     | 38.2                      | 23.8                                     |
| 150           | 188                                       | 0.59                                         | 35.4                   | 85.6                                      | 25.5                      | 10.5                                     |
| 151           | 80                                        | 0.52                                         | 31.2                   | 28.3                                      | 8.4                       | 9.3                                      |
| 152           | 213                                       | 1.11                                         | 66.6                   | 129.1                                     | 38.5                      | 19.8                                     |
| 153           | 123                                       | 0.58                                         | 34.8                   | 46                                        | 13.7                      | 10.4                                     |
| 154           | 126                                       | 0.59                                         | 35.4                   | 47.7                                      | 14.2                      | 10.5                                     |
| 155           | 155                                       | 0.64                                         | 38.4                   | 64.7                                      | 19.3                      | 11.4                                     |
| 156           | 155                                       | 0.73                                         | 43.8                   | 70.1                                      | 20.9                      | 13.1                                     |
| 157           | 183                                       | 0.68                                         | 40.8                   | 77.2                                      | 23.0                      | 12.2                                     |
| 158           | 147                                       | 0.67                                         | 40.2                   | 63.5                                      | 18.9                      | 12.0                                     |
| 159           | 154                                       | 0.68                                         | 40.8                   | 66.6                                      | 19.8                      | 12.2                                     |
| 160           | 183                                       | 0.71                                         | 42.6                   | 81.2                                      | 24.2                      | 12.7                                     |
| 162           | 229                                       | 0.89                                         | 53.4                   | 131.7                                     | 39.2                      | 15.9                                     |
| 163           | 175                                       | 0.72                                         | 43.2                   | 77.6                                      | 23.1                      | 12.9                                     |



| SLR ID<br>No. | Total<br>Theoretic<br>al Days<br>Per Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Max Minutes<br>Per Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely⁵ Hours<br>Per Year | Likely⁴<br>Average<br>Minutes per<br>day |
|---------------|-------------------------------------------|----------------------------------------------|------------------------|-------------------------------------------|---------------------------|------------------------------------------|
| 164           | 38                                        | 0.5                                          | 30                     | 13.9                                      | 4.1                       | 8.9                                      |
| 165           | 140                                       | 0.74                                         | 44.4                   | 69.1                                      | 20.6                      | 13.2                                     |
| 166           | 184                                       | 0.72                                         | 43.2                   | 81.4                                      | 24.3                      | 12.9                                     |
| 167           | 212                                       | 0.73                                         | 43.8                   | 95.6                                      | 28.5                      | 13.1                                     |
| 168           | 134                                       | 0.75                                         | 45                     | 68.8                                      | 20.5                      | 13.4                                     |
| 169           | 205                                       | 0.74                                         | 44.4                   | 104.5                                     | 31.1                      | 13.2                                     |
| 170           | 132                                       | 0.79                                         | 47.4                   | 70.7                                      | 21.1                      | 14.1                                     |
| 171           | 199                                       | 0.76                                         | 45.6                   | 109.5                                     | 32.6                      | 13.6                                     |
| 172           | 127                                       | 0.86                                         | 51.6                   | 69.8                                      | 20.8                      | 15.4                                     |
| 173           | 188                                       | 0.76                                         | 45.6                   | 105.4                                     | 31.4                      | 13.6                                     |
| 174           | 187                                       | 0.78                                         | 46.8                   | 105.5                                     | 31.4                      | 13.9                                     |
| 175           | 117                                       | 1.05                                         | 63                     | 66.5                                      | 19.8                      | 18.8                                     |
| 176           | 176                                       | 0.88                                         | 52.8                   | 107.2                                     | 31.9                      | 15.7                                     |
| 177           | 168                                       | 0.88                                         | 52.8                   | 98.3                                      | 29.3                      | 15.7                                     |
| 178           | 123                                       | 1.12                                         | 67.2                   | 78                                        | 23.2                      | 20.0                                     |
| 179           | 124                                       | 0.65                                         | 39                     | 60.6                                      | 18.1                      | 11.6                                     |
| 180           | 36                                        | 0.47                                         | 28.2                   | 12.2                                      | 3.6                       | 8.4                                      |
| 181           | 162                                       | 0.92                                         | 55.2                   | 83.7                                      | 24.9                      | 16.4                                     |
| 182           | 153                                       | 1.22                                         | 73.2                   | 116.5                                     | 34.7                      | 21.8                                     |
| 183           | 158                                       | 0.86                                         | 51.6                   | 86                                        | 25.6                      | 15.4                                     |
| 184           | 151                                       | 0.82                                         | 49.2                   | 86.3                                      | 25.7                      | 14.7                                     |
| 185           | 144                                       | 0.82                                         | 49.2                   | 85.9                                      | 25.6                      | 14.7                                     |
| 186           | 59                                        | 0.6                                          | 36                     | 26.7                                      | 8.0                       | 10.7                                     |
| 187           | 53                                        | 0.54                                         | 32.4                   | 21.3                                      | 6.3                       | 9.7                                      |
| 188           | 53                                        | 0.54                                         | 32.4                   | 21.3                                      | 6.3                       | 9.7                                      |
| 189           | 69                                        | 0.54                                         | 32.4                   | 31.2                                      | 9.3                       | 9.7                                      |
| 190           | 69                                        | 0.53                                         | 31.8                   | 30.4                                      | 9.1                       | 9.5                                      |
| 191           | 41                                        | 0.39                                         | 23.4                   | 11.6                                      | 3.5                       | 7.0                                      |
| 192           | 41                                        | 0.39                                         | 23.4                   | 11.6                                      | 3.5                       | 7.0                                      |
| 193           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 194           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 195           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 196           | 87                                        | 0.49                                         | 29.4                   | 33.2                                      | 9.9                       | 8.8                                      |
| 197           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |



| SLR ID<br>No. | Total<br>Theoretic<br>al Days<br>Per Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Max Minutes<br>Per Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely⁵ Hours<br>Per Year | Likely⁴<br>Average<br>Minutes per<br>day |
|---------------|-------------------------------------------|----------------------------------------------|------------------------|-------------------------------------------|---------------------------|------------------------------------------|
| 198           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 199           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 200           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 201           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 202           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 203           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 204           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 205           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 206           | 30                                        | 0.21                                         | 12.6                   | 4.4                                       | 1.3                       | 3.8                                      |
| 207           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 208           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 209           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |
| 210           | 0                                         | 0                                            | 0                      | 0                                         | 0.0                       | 0.0                                      |

## Scenario 2

- 11.49 **Figure 11-2** shows the estimated annual hours of shadow flicker effect across the study area. Based on the predictive modelling technique outlined above, there is predicted to be shadow flicker effects of up to 154.6 hours per year, with the highest potential effect found on receptor 142 (shown in **Table 11-6**) assuming the worst-case scenario. Of the 211 receptors in the study area, 24 would not experience any shadow flicker effects arising as a result of the operational phase of the wind farm.
- 11.50 The total theoretical hours per year results shown in **Table 11-6** are based on the 'worstcase scenario', which does not make any allowance for average sunshine hours and assumes the sun and shining and the wind is blowing 100% of daylight hours. The "likely" scenario takes into account the long-term average sunshine hours per year (29.8%) recorded at the nearest Met Éireann Met Station (see Section 11.42).

| Table 11- | 6 Shadow | Flicker | Effects | Scenario | 2 |
|-----------|----------|---------|---------|----------|---|
|-----------|----------|---------|---------|----------|---|

| SLR ID No. | Total<br>Theoretical<br>Days Per<br>Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Average<br>Theoretical<br>Hours Per<br>Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely <sup>7</sup><br>Hours Per<br>Year | Likely⁴<br>Average<br>Minutes per<br>day |
|------------|------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| 1          | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 2          | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |

<sup>&</sup>lt;sup>7</sup> Based on the average sunshine hours for the site of 29.8%.



| SLR ID No. | Total<br>Theoretical<br>Days Per<br>Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Average<br>Theoretical<br>Hours Per<br>Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely <sup>7</sup><br>Hours Per<br>Year | Likely⁴<br>Average<br>Minutes per<br>day |
|------------|------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| 3          | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 4          | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 5          | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 6          | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 7          | 28                                       | 22.2                                         | 0.29                                       | 8.1                                       | 2.4                                      | 6.6                                      |
| 8          | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 9          | 42                                       | 30.6                                         | 0.42                                       | 17.7                                      | 5.3                                      | 9.1                                      |
| 10         | 47                                       | 30.6                                         | 0.42                                       | 19.8                                      | 5.9                                      | 9.1                                      |
| 11         | 43                                       | 31.2                                         | 0.42                                       | 18.1                                      | 5.4                                      | 9.3                                      |
| 12         | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 13         | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 14         | 62                                       | 34.8                                         | 0.49                                       | 30.6                                      | 9.1                                      | 10.4                                     |
| 15         | 48                                       | 29.4                                         | 0.32                                       | 15.3                                      | 4.6                                      | 8.8                                      |
| 16         | 70                                       | 28.8                                         | 0.29                                       | 20                                        | 6.0                                      | 8.6                                      |
| 17         | 30                                       | 28.2                                         | 0.37                                       | 11.1                                      | 3.3                                      | 8.4                                      |
| 18         | 121                                      | 33                                           | 0.4                                        | 49                                        | 14.6                                     | 9.8                                      |
| 19         | 38                                       | 27.6                                         | 0.32                                       | 12.2                                      | 3.6                                      | 8.2                                      |
| 20         | 38                                       | 27.6                                         | 0.32                                       | 12.3                                      | 3.7                                      | 8.2                                      |
| 21         | 39                                       | 27.6                                         | 0.32                                       | 12.4                                      | 3.7                                      | 8.2                                      |
| 22         | 40                                       | 28.8                                         | 0.34                                       | 13.7                                      | 4.1                                      | 8.6                                      |
| 23         | 38                                       | 27.6                                         | 0.33                                       | 12.4                                      | 3.7                                      | 8.2                                      |
| 24         | 38                                       | 28.2                                         | 0.33                                       | 12.6                                      | 3.8                                      | 8.4                                      |
| 25         | 39                                       | 27.6                                         | 0.32                                       | 12.5                                      | 3.7                                      | 8.2                                      |
| 26         | 38                                       | 27                                           | 0.31                                       | 11.8                                      | 3.5                                      | 8.0                                      |
| 27         | 36                                       | 27                                           | 0.32                                       | 11.5                                      | 3.4                                      | 8.0                                      |
| 28         | 38                                       | 27                                           | 0.3                                        | 11.4                                      | 3.4                                      | 8.0                                      |
| 29         | 37                                       | 27                                           | 0.31                                       | 11.4                                      | 3.4                                      | 8.0                                      |
| 30         | 37                                       | 27                                           | 0.31                                       | 11.3                                      | 3.4                                      | 8.0                                      |
| 31         | 40                                       | 28.8                                         | 0.34                                       | 13.4                                      | 4.0                                      | 8.6                                      |
| 32         | 38                                       | 28.8                                         | 0.34                                       | 13.1                                      | 3.9                                      | 8.6                                      |
| 33         | 38                                       | 28.2                                         | 0.34                                       | 12.8                                      | 3.8                                      | 8.4                                      |
| 34         | 38                                       | 28.2                                         | 0.33                                       | 12.7                                      | 3.8                                      | 8.4                                      |
| 35         | 38                                       | 27.6                                         | 0.32                                       | 12.3                                      | 3.7                                      | 8.2                                      |
| 36         | 36                                       | 27.6                                         | 0.33                                       | 12                                        | 3.6                                      | 8.2                                      |





| SLR ID No. | Total<br>Theoretical<br>Days Per<br>Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Average<br>Theoretical<br>Hours Per<br>Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely <sup>7</sup><br>Hours Per<br>Year | Likely⁴<br>Average<br>Minutes per<br>day |
|------------|------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| 37         | 39                                       | 28.2                                         | 0.33                                       | 12.9                                      | 3.8                                      | 8.4                                      |
| 38         | 38                                       | 28.8                                         | 0.34                                       | 12.9                                      | 3.8                                      | 8.6                                      |
| 39         | 36                                       | 27                                           | 0.32                                       | 11.4                                      | 3.4                                      | 8.0                                      |
| 40         | 38                                       | 28.8                                         | 0.34                                       | 13                                        | 3.9                                      | 8.6                                      |
| 41         | 40                                       | 28.8                                         | 0.33                                       | 13.1                                      | 3.9                                      | 8.6                                      |
| 42         | 36                                       | 27                                           | 0.32                                       | 11.6                                      | 3.5                                      | 8.0                                      |
| 43         | 36                                       | 26.4                                         | 0.3                                        | 11                                        | 3.3                                      | 7.9                                      |
| 44         | 38                                       | 28.8                                         | 0.35                                       | 13.2                                      | 3.9                                      | 8.6                                      |
| 45         | 38                                       | 28.2                                         | 0.33                                       | 12.7                                      | 3.8                                      | 8.4                                      |
| 46         | 37                                       | 27.6                                         | 0.32                                       | 11.7                                      | 3.5                                      | 8.2                                      |
| 47         | 38                                       | 28.8                                         | 0.35                                       | 13.3                                      | 4.0                                      | 8.6                                      |
| 48         | 38                                       | 28.2                                         | 0.34                                       | 12.8                                      | 3.8                                      | 8.4                                      |
| 49         | 38                                       | 27.6                                         | 0.32                                       | 12.1                                      | 3.6                                      | 8.2                                      |
| 50         | 36                                       | 27                                           | 0.31                                       | 11                                        | 3.3                                      | 8.0                                      |
| 51         | 39                                       | 28.8                                         | 0.33                                       | 12.9                                      | 3.8                                      | 8.6                                      |
| 52         | 39                                       | 28.8                                         | 0.33                                       | 13                                        | 3.9                                      | 8.6                                      |
| 53         | 37                                       | 27.6                                         | 0.32                                       | 12                                        | 3.6                                      | 8.2                                      |
| 54         | 36                                       | 27                                           | 0.31                                       | 11.1                                      | 3.3                                      | 8.0                                      |
| 55         | 38                                       | 28.8                                         | 0.34                                       | 13                                        | 3.9                                      | 8.6                                      |
| 56         | 36                                       | 27                                           | 0.31                                       | 11.2                                      | 3.3                                      | 8.0                                      |
| 57         | 126                                      | 55.2                                         | 0.56                                       | 70.5                                      | 21.0                                     | 16.4                                     |
| 58         | 37                                       | 28.2                                         | 0.33                                       | 12.2                                      | 3.6                                      | 8.4                                      |
| 59         | 40                                       | 28.8                                         | 0.33                                       | 13.2                                      | 3.9                                      | 8.6                                      |
| 60         | 36                                       | 27                                           | 0.32                                       | 11.4                                      | 3.4                                      | 8.0                                      |
| 61         | 37                                       | 28.2                                         | 0.34                                       | 12.4                                      | 3.7                                      | 8.4                                      |
| 62         | 39                                       | 28.8                                         | 0.34                                       | 13.3                                      | 4.0                                      | 8.6                                      |
| 63         | 61                                       | 31.2                                         | 0.34                                       | 20.7                                      | 6.2                                      | 9.3                                      |
| 64         | 36                                       | 26.4                                         | 0.3                                        | 10.9                                      | 3.2                                      | 7.9                                      |
| 65         | 38                                       | 29.4                                         | 0.35                                       | 13.4                                      | 4.0                                      | 8.8                                      |
| 66         | 34                                       | 26.4                                         | 0.32                                       | 10.7                                      | 3.2                                      | 7.9                                      |
| 67         | 38                                       | 28.2                                         | 0.33                                       | 12.7                                      | 3.8                                      | 8.4                                      |
| 68         | 40                                       | 29.4                                         | 0.34                                       | 13.6                                      | 4.1                                      | 8.8                                      |
| 69         | 40                                       | 29.4                                         | 0.34                                       | 13.6                                      | 4.1                                      | 8.8                                      |
| 70         | 38                                       | 28.8                                         | 0.34                                       | 12.8                                      | 3.8                                      | 8.6                                      |





| SLR ID No. | Total<br>Theoretical<br>Days Per<br>Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Average<br>Theoretical<br>Hours Per<br>Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely <sup>7</sup><br>Hours Per<br>Year | Likely⁴<br>Average<br>Minutes per<br>day |
|------------|------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| 71         | 38                                       | 27.6                                         | 0.31                                       | 11.8                                      | 3.5                                      | 8.2                                      |
| 72         | 36                                       | 27.6                                         | 0.32                                       | 11.6                                      | 3.5                                      | 8.2                                      |
| 73         | 38                                       | 28.8                                         | 0.34                                       | 13                                        | 3.9                                      | 8.6                                      |
| 74         | 36                                       | 27                                           | 0.32                                       | 11.4                                      | 3.4                                      | 8.0                                      |
| 75         | 34                                       | 27                                           | 0.33                                       | 11.1                                      | 3.3                                      | 8.0                                      |
| 76         | 36                                       | 27                                           | 0.31                                       | 11                                        | 3.3                                      | 8.0                                      |
| 77         | 35                                       | 26.4                                         | 0.31                                       | 10.8                                      | 3.2                                      | 7.9                                      |
| 78         | 38                                       | 28.8                                         | 0.35                                       | 13.1                                      | 3.9                                      | 8.6                                      |
| 79         | 34                                       | 26.4                                         | 0.31                                       | 10.6                                      | 3.2                                      | 7.9                                      |
| 80         | 38                                       | 28.8                                         | 0.35                                       | 13.1                                      | 3.9                                      | 8.6                                      |
| 81         | 37                                       | 28.2                                         | 0.33                                       | 12.1                                      | 3.6                                      | 8.4                                      |
| 82         | 36                                       | 27.6                                         | 0.33                                       | 11.9                                      | 3.5                                      | 8.2                                      |
| 83         | 36                                       | 27.6                                         | 0.33                                       | 11.7                                      | 3.5                                      | 8.2                                      |
| 84         | 36                                       | 27.6                                         | 0.32                                       | 11.5                                      | 3.4                                      | 8.2                                      |
| 85         | 36                                       | 27                                           | 0.32                                       | 11.4                                      | 3.4                                      | 8.0                                      |
| 86         | 36                                       | 27                                           | 0.31                                       | 11.2                                      | 3.3                                      | 8.0                                      |
| 87         | 34                                       | 27                                           | 0.32                                       | 11                                        | 3.3                                      | 8.0                                      |
| 88         | 136                                      | 66                                           | 0.69                                       | 94.1                                      | 28.0                                     | 19.7                                     |
| 89         | 33                                       | 26.4                                         | 0.31                                       | 10.4                                      | 3.1                                      | 7.9                                      |
| 90         | 141                                      | 71.4                                         | 0.72                                       | 101.5                                     | 30.2                                     | 21.3                                     |
| 91         | 34                                       | 26.4                                         | 0.31                                       | 10.7                                      | 3.2                                      | 7.9                                      |
| 92         | 34                                       | 26.4                                         | 0.32                                       | 10.8                                      | 3.2                                      | 7.9                                      |
| 93         | 34                                       | 27                                           | 0.32                                       | 11                                        | 3.3                                      | 8.0                                      |
| 94         | 148                                      | 61.8                                         | 0.6                                        | 89.1                                      | 26.6                                     | 18.4                                     |
| 95         | 146                                      | 71.4                                         | 0.72                                       | 105.2                                     | 31.3                                     | 21.3                                     |
| 96         | 148                                      | 60                                           | 0.52                                       | 77.2                                      | 23.0                                     | 17.9                                     |
| 97         | 91                                       | 35.4                                         | 0.37                                       | 33.8                                      | 10.1                                     | 10.5                                     |
| 98         | 161                                      | 70.2                                         | 0.54                                       | 86.7                                      | 25.8                                     | 20.9                                     |
| 99         | 162                                      | 72.6                                         | 0.63                                       | 101.3                                     | 30.2                                     | 21.6                                     |
| 100        | 46                                       | 33                                           | 0.38                                       | 17.3                                      | 5.2                                      | 9.8                                      |
| 101        | 84                                       | 36                                           | 0.38                                       | 31.7                                      | 9.4                                      | 10.7                                     |
| 102        | 34                                       | 27.6                                         | 0.32                                       | 10.8                                      | 3.2                                      | 8.2                                      |
| 103        | 75                                       | 29.4                                         | 0.34                                       | 25.8                                      | 7.7                                      | 8.8                                      |
| 104        | 34                                       | 27                                           | 0.31                                       | 10.5                                      | 3.1                                      | 8.0                                      |



| SLR ID No. | Total<br>Theoretical<br>Days Per<br>Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Average<br>Theoretical<br>Hours Per<br>Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely <sup>7</sup><br>Hours Per<br>Year | Likely⁴<br>Average<br>Minutes per<br>day |
|------------|------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| 105        | 88                                       | 33.6                                         | 0.4                                        | 34.9                                      | 10.4                                     | 10.0                                     |
| 106        | 88                                       | 34.2                                         | 0.41                                       | 35.8                                      | 10.7                                     | 10.2                                     |
| 107        | 93                                       | 35.4                                         | 0.43                                       | 39.8                                      | 11.9                                     | 10.5                                     |
| 108        | 43                                       | 34.2                                         | 0.4                                        | 17                                        | 5.1                                      | 10.2                                     |
| 109        | 96                                       | 34.8                                         | 0.43                                       | 40.9                                      | 12.2                                     | 10.4                                     |
| 110        | 42                                       | 31.8                                         | 0.39                                       | 16.3                                      | 4.9                                      | 9.5                                      |
| 111        | 109                                      | 41.4                                         | 0.57                                       | 62.5                                      | 18.6                                     | 12.3                                     |
| 112        | 92                                       | 45                                           | 0.63                                       | 58.4                                      | 17.4                                     | 13.4                                     |
| 113        | 103                                      | 41.4                                         | 0.58                                       | 59.9                                      | 17.9                                     | 12.3                                     |
| 114        | 81                                       | 43.8                                         | 0.53                                       | 42.7                                      | 12.7                                     | 13.1                                     |
| 115        | 10                                       | 10.8                                         | 0.13                                       | 1.3                                       | 0.4                                      | 3.2                                      |
| 116        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 117        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 118        | 81                                       | 33.6                                         | 0.47                                       | 38                                        | 11.3                                     | 10.0                                     |
| 119        | 8                                        | 9.6                                          | 0.13                                       | 1                                         | 0.3                                      | 2.9                                      |
| 120        | 6                                        | 4.8                                          | 0.06                                       | 0.4                                       | 0.1                                      | 1.4                                      |
| 121        | 40                                       | 39.6                                         | 0.54                                       | 21.6                                      | 6.4                                      | 11.8                                     |
| 122        | 157                                      | 28.8                                         | 0.32                                       | 50.8                                      | 15.1                                     | 8.6                                      |
| 123        | 110                                      | 30.6                                         | 0.4                                        | 43.8                                      | 13.1                                     | 9.1                                      |
| 124        | 71                                       | 86.4                                         | 1.03                                       | 73.1                                      | 21.8                                     | 25.7                                     |
| 125        | 80                                       | 30                                           | 0.36                                       | 29.2                                      | 8.7                                      | 8.9                                      |
| 126        | 98                                       | 29.4                                         | 0.34                                       | 33.2                                      | 9.9                                      | 8.8                                      |
| 127        | 84                                       | 30                                           | 0.32                                       | 26.5                                      | 7.9                                      | 8.9                                      |
| 128        | 119                                      | 54                                           | 0.76                                       | 90.4                                      | 26.9                                     | 16.1                                     |
| 129        | 108                                      | 32.4                                         | 0.38                                       | 40.7                                      | 12.1                                     | 9.7                                      |
| 130        | 113                                      | 33.6                                         | 0.39                                       | 43.7                                      | 13.0                                     | 10.0                                     |
| 131        | 120                                      | 34.8                                         | 0.4                                        | 47.4                                      | 14.1                                     | 10.4                                     |
| 132        | 48                                       | 30                                           | 0.36                                       | 17.4                                      | 5.2                                      | 8.9                                      |
| 133        | 159                                      | 39.6                                         | 0.53                                       | 84.8                                      | 25.3                                     | 11.8                                     |
| 134        | 176                                      | 66.6                                         | 0.7                                        | 123.8                                     | 36.9                                     | 19.8                                     |
| 135        | 120                                      | 36.6                                         | 0.42                                       | 49.9                                      | 14.9                                     | 10.9                                     |
| 136        | 148                                      | 61.8                                         | 0.82                                       | 121.4                                     | 36.2                                     | 18.4                                     |
| 137        | 154                                      | 63                                           | 0.81                                       | 124.3                                     | 37.0                                     | 18.8                                     |
| 138        | 171                                      | 43.8                                         | 0.58                                       | 99.6                                      | 29.7                                     | 13.1                                     |



| SLR ID No. | Total<br>Theoretical<br>Days Per<br>Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Average<br>Theoretical<br>Hours Per<br>Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely <sup>7</sup><br>Hours Per<br>Year | Likely⁴<br>Average<br>Minutes per<br>day |
|------------|------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| 139        | 89                                       | 31.2                                         | 0.37                                       | 32.7                                      | 9.7                                      | 9.3                                      |
| 140        | 89                                       | 31.2                                         | 0.37                                       | 32.7                                      | 9.7                                      | 9.3                                      |
| 141        | 189                                      | 66.6                                         | 0.69                                       | 130.7                                     | 38.9                                     | 19.8                                     |
| 142        | 201                                      | 78.6                                         | 0.77                                       | 154.6                                     | 46.1                                     | 23.4                                     |
| 143        | 203                                      | 78.6                                         | 0.73                                       | 147.8                                     | 44.0                                     | 23.4                                     |
| 144        | 135                                      | 55.2                                         | 0.51                                       | 68.5                                      | 20.4                                     | 16.4                                     |
| 145        | 203                                      | 76.2                                         | 0.67                                       | 135.5                                     | 40.4                                     | 22.7                                     |
| 146        | 204                                      | 77.4                                         | 0.68                                       | 139                                       | 41.4                                     | 23.1                                     |
| 147        | 191                                      | 36                                           | 0.45                                       | 85.6                                      | 25.5                                     | 10.7                                     |
| 148        | 203                                      | 75.6                                         | 0.61                                       | 123.9                                     | 36.9                                     | 22.5                                     |
| 149        | 209                                      | 83.4                                         | 0.67                                       | 140                                       | 41.7                                     | 24.9                                     |
| 150        | 193                                      | 37.2                                         | 0.47                                       | 91.4                                      | 27.2                                     | 11.1                                     |
| 151        | 82                                       | 32.4                                         | 0.37                                       | 30.5                                      | 9.1                                      | 9.7                                      |
| 152        | 217                                      | 68.4                                         | 0.64                                       | 138.6                                     | 41.3                                     | 20.4                                     |
| 153        | 128                                      | 36                                           | 0.39                                       | 49.7                                      | 14.8                                     | 10.7                                     |
| 154        | 130                                      | 36.6                                         | 0.39                                       | 51.3                                      | 15.3                                     | 10.9                                     |
| 155        | 196                                      | 40.2                                         | 0.41                                       | 81.3                                      | 24.2                                     | 12.0                                     |
| 156        | 163                                      | 45                                           | 0.46                                       | 75.6                                      | 22.5                                     | 13.4                                     |
| 157        | 190                                      | 42.6                                         | 0.44                                       | 83.9                                      | 25.0                                     | 12.7                                     |
| 158        | 155                                      | 41.4                                         | 0.44                                       | 68.6                                      | 20.4                                     | 12.3                                     |
| 159        | 159                                      | 42.6                                         | 0.45                                       | 71.9                                      | 21.4                                     | 12.7                                     |
| 160        | 189                                      | 44.4                                         | 0.46                                       | 87.3                                      | 26.0                                     | 13.2                                     |
| 161        | 37                                       | 28.2                                         | 0.33                                       | 12.1                                      | 3.6                                      | 8.4                                      |
| 162        | 235                                      | 55.8                                         | 0.6                                        | 140.8                                     | 42.0                                     | 16.6                                     |
| 163        | 182                                      | 44.4                                         | 0.46                                       | 83.9                                      | 25.0                                     | 13.2                                     |
| 164        | 41                                       | 30.6                                         | 0.36                                       | 14.8                                      | 4.4                                      | 9.1                                      |
| 165        | 179                                      | 45.6                                         | 0.49                                       | 88.4                                      | 26.3                                     | 13.6                                     |
| 166        | 192                                      | 44.4                                         | 0.46                                       | 88.1                                      | 26.3                                     | 13.2                                     |
| 167        | 214                                      | 45.6                                         | 0.48                                       | 103                                       | 30.7                                     | 13.6                                     |
| 168        | 169                                      | 46.8                                         | 0.52                                       | 88.3                                      | 26.3                                     | 13.9                                     |
| 169        | 208                                      | 46.2                                         | 0.53                                       | 111.1                                     | 33.1                                     | 13.8                                     |
| 170        | 165                                      | 51.6                                         | 0.55                                       | 91                                        | 27.1                                     | 15.4                                     |
| 171        | 202                                      | 47.4                                         | 0.58                                       | 116.5                                     | 34.7                                     | 14.1                                     |
| 172        | 132                                      | 55.8                                         | 0.57                                       | 75.2                                      | 22.4                                     | 16.6                                     |





| SLR ID No. | Total<br>Theoretical<br>Days Per<br>Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Average<br>Theoretical<br>Hours Per<br>Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely <sup>7</sup><br>Hours Per<br>Year | Likely⁴<br>Average<br>Minutes per<br>day |
|------------|------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| 173        | 189                                      | 49.8                                         | 0.6                                        | 112.9                                     | 33.6                                     | 14.8                                     |
| 174        | 188                                      | 51                                           | 0.6                                        | 113.5                                     | 33.8                                     | 15.2                                     |
| 175        | 121                                      | 66.6                                         | 0.59                                       | 71.6                                      | 21.3                                     | 19.8                                     |
| 176        | 176                                      | 57                                           | 0.65                                       | 114                                       | 34.0                                     | 17.0                                     |
| 177        | 169                                      | 55.8                                         | 0.62                                       | 104.4                                     | 31.1                                     | 16.6                                     |
| 178        | 129                                      | 69                                           | 0.65                                       | 83.6                                      | 24.9                                     | 20.6                                     |
| 179        | 151                                      | 40.8                                         | 0.53                                       | 80.3                                      | 23.9                                     | 12.2                                     |
| 180        | 37                                       | 29.4                                         | 0.35                                       | 13.1                                      | 3.9                                      | 8.8                                      |
| 181        | 166                                      | 57                                           | 0.54                                       | 90                                        | 26.8                                     | 17.0                                     |
| 182        | 154                                      | 75.6                                         | 0.8                                        | 123                                       | 36.7                                     | 22.5                                     |
| 183        | 159                                      | 53.4                                         | 0.58                                       | 91.7                                      | 27.3                                     | 15.9                                     |
| 184        | 152                                      | 51                                           | 0.6                                        | 91.9                                      | 27.4                                     | 15.2                                     |
| 185        | 145                                      | 51                                           | 0.63                                       | 91.5                                      | 27.3                                     | 15.2                                     |
| 186        | 105                                      | 39                                           | 0.41                                       | 43.2                                      | 12.9                                     | 11.6                                     |
| 187        | 55                                       | 33.6                                         | 0.4                                        | 22.2                                      | 6.6                                      | 10.0                                     |
| 188        | 55                                       | 33.6                                         | 0.4                                        | 22.2                                      | 6.6                                      | 10.0                                     |
| 189        | 69                                       | 33.6                                         | 0.47                                       | 32.4                                      | 9.7                                      | 10.0                                     |
| 190        | 69                                       | 33                                           | 0.46                                       | 31.7                                      | 9.4                                      | 9.8                                      |
| 191        | 42                                       | 24                                           | 0.29                                       | 12.4                                      | 3.7                                      | 7.2                                      |
| 192        | 42                                       | 24                                           | 0.29                                       | 12.4                                      | 3.7                                      | 7.2                                      |
| 193        | 53                                       | 27.6                                         | 0.34                                       | 17.8                                      | 5.3                                      | 8.2                                      |
| 194        | 60                                       | 28.2                                         | 0.34                                       | 20.1                                      | 6.0                                      | 8.4                                      |
| 195        | 60                                       | 28.2                                         | 0.34                                       | 20.1                                      | 6.0                                      | 8.4                                      |
| 196        | 87                                       | 30.6                                         | 0.41                                       | 35.2                                      | 10.5                                     | 9.1                                      |
| 197        | 74                                       | 28.2                                         | 0.33                                       | 24.6                                      | 7.3                                      | 8.4                                      |
| 198        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 199        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 200        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 201        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 202        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 203        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 204        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 205        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 206        | 31                                       | 13.2                                         | 0.16                                       | 4.9                                       | 1.5                                      | 3.9                                      |

| SLR ID No. | Total<br>Theoretical<br>Days Per<br>Year | Maximum<br>Theoretical<br>Minutes Per<br>Day | Average<br>Theoretical<br>Hours Per<br>Day | Total<br>Theoretical<br>Hours Per<br>Year | Likely <sup>7</sup><br>Hours Per<br>Year | Likely⁴<br>Average<br>Minutes per<br>day |
|------------|------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| 207        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 208        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 209        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 210        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |
| 211        | 0                                        | 0                                            | 0                                          | 0                                         | 0.0                                      | 0.0                                      |

## **Annual Impacts**

### Scenario 1

- 11.51 There are no properties located within 500 m of the proposed turbines. Based on the theoretical worst-case results in **Table 11-4** 74 receptors would experience shadow flicker effects in excess of 30 hours per year, with the property experiencing the highest annual hours being house receptor 142, experiencing 145 hrs per annum on a worst-case model basis.
- 11.52 Applying the average sunshine hours to the model results in 18 properties exceeding the 30 hours per annum guidance, the property experiencing the highest annual hours is again house number 142 which would experience 43.2 hrs of shadow flicker per annum.

### Scenario 2

- 11.53 There are no properties located within 500 m of the proposed turbines. Based on the theoretical worst-case results in **Table 11-4**, 83 receptors would experience shadow flicker effects in excess of 30 hours per year, with the property experiencing the highest annual hours being house receptor 142, experiencing 154.6 hrs per annum on a worst-case model basis.
- 11.54 Applying the average sunshine hours to the model results in 23 properties exceeding the 30 hours per annum guidance, the property experiencing the highest annual hours is again house number 142 which would experience 46.1 hrs of shadow flicker per annum.

## **Daily Impacts**

### Scenario 1

- 11.55 Based on the theoretical worst-case results above, 84 receptors would experience average shadow flicker effects in excess of 30 minutes per day, with the property experiencing the highest daily exposure being receptor number 124, experiencing 81.6 minutes per day on a worst-case basis, although it is noted that all the properties are in excess of 500m from the nearest turbine.
- 11.56 Applying the average sunshine hours to the model would mean no property is likely to experience more than 24.3 minutes per day of shadow flicker without mitigation.



## Scenario 2

- 11.57 Based on the theoretical worst-case results above, 92 receptors would experience average shadow flicker effects in excess of 30 minutes per day, with the property experiencing the highest daily exposure being house number 124 (an involved property), experiencing 86.4 minutes per day on a worst-case basis, although it is noted that all the properties are in excess of 500m from the nearest turbine.
- 11.58 Applying the average sunshine hours to the model would mean no property is likely to experience more than 25.7 minutes per day of shadow flicker.

#### Potential Impact of Zero Shadow Flicker

- 11.59 Shadow flicker control modules, consisting of light sensors and specialised software, will be installed on all turbines, irrespective of which turbine is installed. This is to prevent operation during periods when shadow flicker is experienced at nearby properties if it is determined there is an issue post-construction.
- 11.60 The shadow flicker control module consists of bespoke software, a clock, a timer, a switch, a wind direction sensor and a light sensor. The module can control a specific turbine (or turbines) which would be programmed to shut down on specific dates at specific times when the sun is bright enough, there is sufficient wind to rotate the blades and the wind direction is such that nuisance shadow flicker could occur.
- 11.61 The installation of a programmable shadow flicker module will allow future conditional control of turbines in order to eliminate shadow flicker, irrespective of which turbine in the range is installed. The correct operation of the installed shadow flicker control measures will ensure that there will be no impact from shadow flicker. The operation and performance of the shadow flicker control measures will be monitored on an ongoing basis.
- 11.62 Under the WEG (2006) guidance shut down periods cover the periods of potential nuisance in excess of 30 hrs per year. The applicant is committed to a zero-shadow flicker strategy which means that the turbines shadow flicker module will be programmed to shut down whenever the conditions for shadow flicker at a property are met, irrespective of which turbine in the range is installed.
- 11.63 Under this approach there would be no shadow flicker experienced at any property, and therefore no impacts on any receptors.
- 11.64 Details of the potential shut down times of the turbines are provided in **Appendix 11-2** (Scenario 1) and **Appendix 11-3** (Scenario 2).

### Do nothing Scenario

11.65 In the 'Do-Nothing' Scenario, the Proposed Development would not be constructed and the potential impacts from shadow flicker on local receptors would not occur. It follows that no mitigation measures would be required under this scenario.

### Cumulative Impacts

11.66 As the Shadow Flicker Control Measures will ensure no shadow flicker effects from Knockanarragh Wind Farm, there will be no cumulative impacts with any nearby wind farms.



## Conclusion

- 11.67 A shadow flicker assessment has been undertaken on up to 211 receptors within 10 rotor diameters of the proposed turbines, under two study area scenarios. When considering the 'Average Theoretical Minutes Per Day', (accounting for any day in which shadow flicker is predicted to occur) then shadow flicker exceeds 30 minutes at 84 receptors under Scenario 1, and 92 receptors under Scenario 2.
- 11.68 When considering the 'Total Theoretical Hours Per Year', 74 receptors are predicted to exceed the WEDG 2006 threshold of more than 30 hours per year under Scenario 1, and 83 under Scenario 2.
- 11.69 However, when accounting for a more 'likely' scenario, where the average annual sunshine hours are taken into account, 18 receptors are predicted to exceed more than 30 hours per year under Scenario 1, and 23 properties are predicted to exceed more than 30 hours per year under Scenario 2.
- 11.70 The results of the conservative shadow flicker assessment predict that the Proposed Development has the potential to introduce shadow flicker impacts at some buildings surrounding the wind farm. However, the applicant is committed to implementing a zero-shadow flicker approach in line with the 2019 Draft Revised Wind Energy Development Guidelines. This will be undertaken by shutting down turbines during times when wind and climactic conditions are such that shadow flicker could occur, using appropriate mitigation measures such as the turbines inbuilt shadow flicker control module. The module would control a specific turbine (or turbines) which would be programmed to shut down on specific dates at specific times when the sun is bright enough, there is sufficient wind to rotate the blades and the wind direction is such that nuisance shadow flicker could occur.
- 11.71 The implementation of the proposed mitigation measures, namely a zero-shadow flicker approach, will ensure that shadow flicker at all buildings is eliminated resulting in no impacts to receptors.



## References

- Department of the Environment, Heritage and Local Government (DoEHLG) (2006). Wind Energy Development Guidelines. Available at: <u>https://www.opr.ie/wp-content/uploads/2019/08/2006-Wind-Energy-Development1.pdf</u>
- Department of Housing, Planning and Local Government (2019), Draft Revised Wind Energy Development Guidelines. Available at: <u>https://www.housing.gov.ie/sites/default/files/publicconsultation/files/draft\_revised\_wind\_energy\_development\_guidelines\_december\_2019.pdf</u>
- Meath County Council Local Development Plan 2021-2027. Available at: <u>https://consult.meath.ie/en/consultation/meath-adopted-county-development-plan</u>
- Westmeath County Council Development Plan 2021-2027. Available at: <u>https://www.westmeathcoco.ie/en/ourservices/planning/developmentplans/countydevelopm</u> <u>entplan2021-2027/</u>



彩SLR





## **Figures**

Figure 11-1: Shadow Flicker Study Area Scenario 1

- Figure 11-2: Shadow Flicker Study Area Scenario 2
- Figure 11-3: Shadow Flicker Results Scenario 1
- Figure 11-4: Shadow Flicker Results Scenario 2









© OpenStreetMap (and) contributors, CC-BY-SA



© OpenStreetMap (and) contributors, CC-BY-SA



| a particular a construction of the constructio | LEGEND                   |                                |                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|-----------------------------------------|--|
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Proposed D                     | evelopment Site Boundary                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Proposed Tu                    | urbine Location                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                        | Proposed A                     | ccess Point                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Proposed In                    | ternal Cable Route                      |  |
| - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Proposed C                     | able Route                              |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Proposed A                     | ccess Track                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Proposed C                     | onstruction Compound                    |  |
| - Pay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | Proposed O                     | perational Compound                     |  |
| 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | Proposed Si                    | ubstation Location                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Proposed Bo                    | orrow Pit Search Area                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Proposed C                     | rane Hardstanding                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Existing Hig                   | h Voltage Transmission                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Line                           | -                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | County Bou                     | ndary                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                        | Residential I                  | Receptor                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i!                       | Shadow Flic                    | ker Study Area Scenario 1               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zone of Po<br>Influence  | otential Shad<br>(hours per ve | ow Flicker<br>ear)                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 0 100                          | ,                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 100 200                        |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 100 - 200                      |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 200 - 300                      |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 300 - 400                      |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 400 - 500                      |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 500 - 600                      |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 600 - 700                      |                                         |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 700 - 800                      |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 800 - 900                      |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 900 - 1,000                    |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 1,000 - 11,00                  | 00                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                |                                         |  |
| 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KNC                      |                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WINI                     | J FAR                          |                                         |  |
| $\sim$ $\sim$ $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                | 7 DUNDRUM BUSINESS PARK<br>WINDY ARBOUR |  |
| and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 茶S                       | LR                             | DUBLIN D14 N2Y7<br>IRELAND              |  |
| and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                | 1: 0129 64667<br>www.slrconsulting.com  |  |
| 1 for a sale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KNOC                     | CKANARRA                       | GH WIND FARM                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EN                       | VIRONME                        |                                         |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AA                       |                                |                                         |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | SHADOW                         | FLICKER                                 |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SHA                      | SHADOW FLICKER RESULTS         |                                         |  |
| K 1 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | FIGURE                         | 11-3                                    |  |
| etres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>Scale</sup> 1:25,00 | 00 @ A3                        | Date<br>MARCH 2024                      |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                        |                                |                                         |  |



| 1 Parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEGEND                  |                                |                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|----------------------------------------|--|--|
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | Proposed D                     | evelopment Site Boundary               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Proposed Tu                    | urbine Location                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{\bullet}$    | Proposed Ac                    | ccess Point                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Proposed In                    | ternal Cable Route                     |  |  |
| - ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | Proposed Ca                    | able Route                             |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | Proposed Ac                    | ccess Track                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Proposed C                     | onstruction Compound                   |  |  |
| - Pay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | Proposed O                     | ,<br>perational Compound               |  |  |
| 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | Proposed S                     | ubstation Location                     |  |  |
| f = f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | Proposed B                     | orrow Pit Search Area                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Proposed C                     | rane Hardstanding                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Existing Higl<br>Line          | h Voltage Transmission                 |  |  |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | County Bour                    | ndary                                  |  |  |
| SA /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                       | Residential I                  | Receptor                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                | Shadow Flic                    | ker Study Area Scenario 2              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zone of Po<br>Influence | otential Shad<br>(hours per ye | ow Flicker<br>ear)                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 0 - 100                        |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 100 - 200                      |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 200 - 300                      |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 300 - 400                      |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 400 - 500                      |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 500 - 600                      |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 600 - 700                      |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 700 - 800                      |                                        |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 800 - 900                      |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 900 - 1 000                    |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1 000 - 11 0                   | 20                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1,000 - 11,00                  | 50                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                |                                        |  |  |
| Leza A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KNC                     | OCKAN                          | IARRAGH                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WINI                    | D FARI                         | M LIMITED                              |  |  |
| $\sim$ $\lambda$ $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                |                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                | 7 DUNDRUM BUSINESS PARK                |  |  |
| a larare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₩S                      | LR                             | DUBLIN D14 N2Y7<br>IRELAND             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                | T: 0129 64667<br>www.slrconsulting.com |  |  |
| A for an and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KNO                     | CKANARRA<br>IVIRONMEI          | GH WIND FARM                           |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AA                      | SSESSME                        | NT REPORT                              |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | SHADOW                         | FLICKER                                |  |  |
| and a second sec | SHA                     | DOW FLIC                       | KER RESULTS<br>ARIO 2                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | FIGURE 11-4                    |                                        |  |  |
| etres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scale 1:25,00           | 00 @ A3                        | Date MARCH 2024                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                |                                        |  |  |

## **Appendices**

Appendix 11-1: Shadow Flicker Modelling Input Data by House / Window

Appendix 11-2: Shadow Flicker Scenario 1 Shutdown Times by Turbine v1

Appendix 11-3: Shadow Flicker Scenario 2 Shutdown Times by Turbine v1

(Refer to EIAR Volume III for Appendices)

